BoltGroup Verification Manual

This following document compares BoltGroup analysis results with the tabulated method provided in AISC. Tables 7-7 through 7-14 employ the instantaneous center of rotation method for the bolt patterns and eccentric conditions indicated, and inclined loads at 0°, 15°, 30°, 45°, 60°, and 75°. The tabulated nondimensional coefficient, C, represents the number of bolts that are effective in resisting the eccentric shear force.

 $\phi R_n = \phi C x r_n$

where C = tabular value r_n = nominal strength per bolt, kip ϕ = 0.75

Example 1

Determine available strength of bolt group connection with five bolts in each of two vertical rows (2 x 5). Vertical bolt spacing S = 3 inches, horizontal bolt spacing 3 inches, 7/8" diameter A325N bolts are loaded in shear, $\phi_v r_n = 21.6$ kip (Table 7-1). The in-plane resultant force P = 70 kips is inclined 30° and applied with eccentricity $e_x = 10$ inches.

Example 2

Determine available strength of bolt group connection with nine bolts in each of two vertical rows (2 x 9). Vertical bolt spacing S = 6 inches, horizontal bolt spacing 3 inches, 7/8" diameter A325N bolts are loaded in shear, $\phi_v r_n = 21.6$ kip (Table 7-1). The in-plane resultant force P = 140 kips is inclined 30° and applied with eccentricity $e_x = 28$ inches.

a) Using BoltGroup spreadsheet φR_n = 172.60 kips
b) Using AISC table 7-8
C(ex=10", S=3", n=5) = 7.99
φR_n = φCr_n = 7.99(21.6) = 172.58 kips
c) BoltGroup Deviation = (172.58-172.60)/172.58 = -0.01%

Table 7–8 (continued)Coefficients C for Eccentrically Loaded Bolt GroupsAngle = 30°

Available Strength of a bolt group, ϕR_n or R_n/Ω , is determined with $R_n = C \times r_n$

or

 $\phi = 0.75$

P = required force, P_{ij} or P_{ai} , kips

- r_n = nominal strength per bolt, kips
- e eccentricity of P with respect to centroid of bolt group, in. (not tabulated, may be determined by geometry)

 $\Omega = 2.00$

- e_x = horizontal component of *e*, in.
- s =bolt spacing, in.
- C = coefficient tabulated below

c in	e _x , in.	Number of Bolts in One Vertical Row, n												
<i>5</i> , m.		1	2	3	4	5	6	7	8	9	10	11	12	
	2	0.97	2.60	4.52	6.54	8.59	10.6	12.7	14.7	16.7	18.8	20.8	22.8	
	3	0.75	2.12	3.83	5.71	7.71	9.75	11.8	13.9	15.9	18.0	20.0	22.1	
	4	0.62	1.78	3.29	4.99	6.88	8.87	10.9	13.0	15.1	17.1	19.2	21.3	
	5	0.52	1.53	2.85	4.39	6.16	8.06	10.0	12.1	14.1	16.2	18.3	20.4	
	6	0.45	1.34	2.51	3.89	5.54	7.33	9.23	11.2	13.2	15.3	17.3	19.4	
	7	0.40	1.19	2.23	3.48	5.01	1 70	8.51	10.4	12.4	14.4	16.4	18.5	
	8	0.36	1.07	2.00	3.15	4.57	6.14	7.86	9.68	11.6	13.6	15.6	17.6	
	9	0.32	0.97	1.81	2.87	4.18	5.66	7.28	9.02	10.9	12.8	14.7	16.7	
3	10	0.30	0.88	1.66	2.64	(3.87)	5.24	6.77	8.43	10.2	12.0	13.9	15.9	
	12	0.25	0.75	1.41	2.27	3.34	4.54	5.92	7.43	9.04	10.8	12.5	14.4	
	14	0.22	0.65	1.23	1.98	2.93	3.99	5.24	6.61	8.09	9.67	11.4	13.1	
	16	0.19	0.58	1.08	1.76	2.60	3.56	4.69	5.94	7.30	8.77	10.3	12.0	
	18	0.17	0.52	0.97	1.58	2.34	3.21	4.24	5.38	6.64	8.0	9.45	11.0	
	20	0.16	0.47	0.88	1.43	2.12	2.92	3.87	4.92	6.08	7.3	8.70	10.1	
	24	0.13	0.39	0.74	1.21	1.79	2.48	3.29	4.18	5.19	6.3	7.48	8.75	
	28	0.12	0.34	0.64	1.04	1.55	2.14	2.85	3.63	4.52	5.5	6.54	7.68	
	32	0.10	0.30	0.56	0.92	1.36	1.89	2.51	3.21	4.00	4.9	5.81	6.83	
	36	0.09	0.26	0.50	0.82	1.21	1.69	2.25	2.87	3.59	4.4	5.22	6.15	
	2	0.97	3.20	5.31	7.37	9.39	11.4	13.4	15.4	17.4	19.4	21.3	23.3	
	3	0.75	2.75	4.86	6.95	9.01	11.1	13.1	15.1	17.1	19.1	21.1	23.1	
	4	0.62	2.39	4.42	6.49	8.57	10.6	12.7	14.7	16.8	18.8	20.8	22.8	
}	5	0.52	2.10	4.02	6.04	8.11	10.2	12.3	14.3	16.4	18.4	20.4	22.5	
6	6	0.45	1.87	3.67	5.61	7.66	9.73	11.8	13.9	16.0	18.0	20.1	22.1	
	7	0.40	1.69	3.36	5.21	7.21	9.27	11.4	13.4	15.5	17.6	19.6	21.7	
	8	0.36	1.53	3.08	4.84	6.79	8.82	10.9	13.0	15.1	17.1	19.2	21.3	
	9	0.32	1.40	2.84	4.51	6.40	8.39	10.4	12.5	14.6	16.7	18.7	20.8	
	10	0.30	1.29	2.63	4.21	6.04	7.98	9.99	12.0	14.1	16.2	18.3	20.4	
	12	0.25	1.12	2.28	3.70	5.39	7.23	9.16	11.2	13.2	15.3	17.3	19.4	
	14	0.22	0.98	2.00	3.29	4.86	6.57	8.41	10.3	12.3	14.4	16.4	18.5	
	16	0.19	0.87	1.78	2.95	4.40	6.01	7.75	9.6	11.5	13.5	15.5	17.6	
	18	0.17	0.79	1.60	2.68	4.02	5.52	7.17	8.9	10.8	n 1.7	14.7	16.7	
	20	0.16	0.71	1.45	2.45	3.70	5.09	6.65	8.3	10.1	0.6	13.9	15.9	
	24	0.13	0.60	1.23	2.08	3.17	4.39	5.79	7.3	8.95	10.7	12.5	14.4	
	28	0.12	0.52	1.06	1.82	2.77	3.85	5.11	6.5	(7.99)	9.59	11.3	13.0	
	32	0.10	0.46	0.93	1.61	2.45	3.42	4.56	5.8	7.20	8.68	10.3	11.9	
	36	0.09	0.41	0.83	1.44	2.20	3.08	4.12	5.3	6.53	7.91	9.37	10.9	

AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.

Example 3

Determine available strength of bolt group connection with three bolts in each of three vertical rows (3 x 3). Vertical bolt spacing S = 6 inches, horizontal bolt spacing 6 inches, 7/8" diameter A325N bolts are loaded in shear, $\phi_v r_n = 21.6$ kip (Table 7-1). The in-plane resultant force P = 100 kips is inclined 75° and applied with eccentricity $e_x = 20$ inches.

a) Using BoltGroup spreadsheet $\phi R_n = 132.85$ kips b) Using AISC table 7-12 $C(e_x=20^{\circ}, S=6^{\circ}, n=3) = 6.15$ $\phi R_n = \phi Cr_n = 6.15(21.6) = 132.84$ kips c) BoltGroup Deviation = -0.0075%

Table 7–12 (continued) **Coefficients C for Eccentrically Loaded Bolt Groups** Angle $= 75^{\circ}$

Available Strength of a bolt group, ϕR_n or R_n/Ω , is determined with

$$R_n = C \times r_n$$

$$\phi = 0.75$$
 $\Omega = 2.00$ or

LRFD ASD P_u $\Omega P_{\underline{a}}$ $C_{min} =$ C_{min} = \bar{r}_{η} φr_n

P = required force, P_{μ} or P_{μ} kips

- $r_n =$ nominal strength per bolt, kips
- \vec{e} = eccentricity of *P* with respect to centroid of bolt group, in. (not tabulated, may be determined by geometry)
- e_{x} = horizontal component of e_{x} in. 12
- s = bolt spacing, in.
- C = coefficient tabulated below

s in	e _x , in.	Number of Bolts in One Vertical Row, n												
		1	2	3	4	5	6	7	8	9	10	11	12	
1.1	2	2.92	5.83	8.73	11.6	14.5	17.4	20.3	23.1	26.0	28.9	31.8	34.7	
	3	2.89	5.77	8.63	11.5	14.3	17.2	20.0	22.8	25.7	28.5	31.4	34.2	
	4	2.86	5.70	8.51	11.3	14.1	16.9	19.7	22.5	25.3	28.1	30.9	33.7	
	5	2.82	5.61	8.38	11.1	13.9	16.6	19.4	22.1	24.9	27.7	30.5	33.3	
	6	2.77	5.51	8.23	10.9	13.6	16.3	19.0	21.8	24.5	27.2	30.0	32.8	
	7	2.72	5.40	8.06	10.7	13.4	16.0	18.7	21.4	24.1	26.8	29.6	32.3	
	8	2.66	5.29	7.89	10.5	13.1	15.7	18.3	21.0	23.7	26.4	29.1	31.9	
	9	2.60	5.16	7.71	10.3	12.8	15.4	18.0	20.6	23.3	26.0	28.7	31.4	
3	10	2.53	5.04	7.53	10.0	12.6	15.1	17.7	20.3	22.9	25.6	28.3	31.0	
	12	2.40	4.78	7.16	9.57	12.0	14.5	17.0	19.6	22.1	24.8	27.4	30.1	
	14	2.26	4.52	6.80	9.12	11.5	13.9	16.4	18.9	21.4	24.0	26.6	29.3	
	16	2.13	4.27	6.45	8.68	11.0	13.3	15.8	18.2	20.7	23.3	25.9	28.5	
	18	2.00	4.03	6.12	8.27	10.5	12.8	15.2	17.6	20.1	22.6	25.1	27.7	
	20	1.89	3.81	5.80	7.88	10.1	12.3	14.6	17.0	19.4	21.9	24.4	27.0	
	24	1.67	3.41	5.24	7.18	9.22	11.4	13.6	15.9	18.2	20.7	23.1	25.6	
	28	1.49	3.06	4.75	6.56	8.49	10.5	12.6	14.9	17.1	19.5	21.9	24.3	
	32	1.34	2.77	4.33	6.02	7.84	9.77	11.8	13.9	16.1	18.4	20.7	23.1	
	36	1.21	2.52	3.97	5.56	1.27	9.10	11.1	13.1	15.2	17.4	19.7	22.0	
	2	2.92	5.82	8.71	11.6	14.5	17.4	20.3	23.5	26.4	29.3	32.3	35.2	
	3	2.89	5.76	8.60	11.4	14.3	17.1	20.0	22.9	25.8	28.7	31.7	34.6	
	4	2.86	5.68	8.47	11.3	14.1	16.9	19.8	22.6	25.5	28.4	31.3	34.2	
	5	2.82	5.59	8.34	10.0	13.9	16.7	19.5	22.4	25.2	28.1	31.0	33.9	
	0	2.11	5.49	0.19	10.9	13.7	10.4	19.2	22.1	24.9	27.0	30.7	33.0	
친구 문		2.72	5.39	8.04	10.7	13.4	16.2	19.0	21.8	24.6	27.5	30.4	33.3	
	8	2.00	5.27	7.89	10.5	13.2	16.0	10.0	21.0	24.4	27.2	30.1	33.0	
	10	2.00	5.10	7.74	10.4	12.0	15.6	18.3	21.3	24.1	27.0	29.0	32.7	
6	12	2.00	4 81	7.30	9.81	2.0	15.1	.17.8	20.6	23.3	26.2	29.0	31.8	
	14	2.10	4.57	6.07	0.01	3.	147	174	20.0	20.0	25.6	28.0	21.2	
	16	2.20	4.37	6.69	9.47	117	14.7	16.9	19.6	22.5	25.0	20.4	30.7	
約 回日。	18	2.10	4.00	6 41	8.82	11.3	13.9	16.5	19.0	21.4	24.7	27.4	30.2	
(市)の	20	1.89	3.93	615	8.51	11.0	13.5	16.1	18.8	21.5	24.2	27.0	29.8	
	24	1.67	3.57	5.67	7.95	10.4	12.9	15.4	18.0	20.7	23.4	26.1	28.8	
지 않는 것이 같이 많이	28	1 49	3 25	5.25	7 44	9 77	122	14.7	173	199	22.6	25.3	28.0	
	32	1.34	2.97	4.87	6.98	9.23	11.6	14.1	16.6	19.2	21.8	24.5	27.2	
調査	36	1.21	2.73	4.54	6.56	8.74	11.1	13.5	16.0	18.5	21.1	23.7	26.4	
CL	L	L	I	I	L	1	L	L	1	J	L	L	1	
					-									